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Abstract

Background and Aims: Hepatic ischemia-reperfusion injury
(HIRI) is a prevalent complication of liver transplantation,
partial hepatectomy, and severe infection, necessitating the
development of more effective clinical strategies. Receptor ac-
tivity-modifying protein 1 (RAMP1), a member of the G pro-
tein—coupled receptor adapter family, has been implicated in
numerous physiological and pathological processes. The study
aimed to investigate the pathogenesis of RAMP1 in HIRL. Meth-
ods: We established a 70% liver ischemia-reperfusion model
in RAMP1 knockout (KO) and wild-type mice. Liver and blood
samples were collected after 0, 6, and 24 h of hypoxia/rep-
erfusion. Liver histological and serological analyses were per-
formed to evaluate liver damage. We also conducted in-vitro
and in-vivo experiments to explore the molecular mechanism
underlying RAMP1 function. Results: Liver injury was exac-
erbated in RAMP1-KO mice compared with the sham group,
as evidenced by increased cell death and elevated serum
transaminase and inflammation levels. HIRI was promoted in
RAMP1-KO mice via the induction of hepatocyte apoptosis and
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inhibition of proliferation. The absence of RAMP1 led to in-
creased activation of the extracellular signal-regulated kinase
(ERK)/mitogen-activated protein kinase (MAPK) pathway and
yes-associated protein (YAP) phosphorylation, ultimately pro-
moting apoptosis. SCH772984, an ERK/MAPK phosphorylation
inhibitor, and PY-60, a YAP phosphorylation inhibitor, reduced
apoptosis in in-vitro and in-vivo experiments. Conclusions:
Our findings suggest that RAMP1 protects against HIRI by
inhibiting ERK and YAP phosphorylation signal transduction,
highlighting its potential as a therapeutic target for HIRI and
providing a new avenue for intervention.
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Introduction

Hepatic ischemia-reperfusion injury (HIRI) is a major form of
liver damage that can occur during surgeries, such as partial
hepatectomy and liver transplantation,! and with conditions
such as hemorrhagic shock and severe infection.? It has two
stages: initial cellular damage due to hypoxia and the subse-
quent restoration of oxygen delivery, and subsequent toxic
effects of oxygen reperfusion on ischemic tissue. These effects
can further exacerbate liver dysfunction and damage, leading
to processes such as inflammatory cell infiltration, the produc-
tion and release of cytokines and chemokines, oxygen-free
radical production and destruction, and mitochondrial Ca2*
overload.3-7 Despite extensive research on HIRI, effective
drugs for clinical use are lacking, and the identification of via-
ble drug targets is critical for the development of clinical ther-
apies. G protein—-coupled receptors (GPCRs) form the largest
class of cell surface receptors in humans and a major drug
target category. Our research focuses on the identification of
GPCRs associated with HIRI, with the aim of discovering new
therapeutic targets to guide effective drug development and
provide novel approaches to the clinical treatment of HIRI.
We are particularly interested in GPCRs that have been
shown to regulate inflammation and injury repair, such as
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calcitonin gene-related peptide (CGRP) receptors. Recep-
tor activity-modifying protein 1 (RAMP1) and calcitonin-like
receptor (CLR) are the two main components of these re-
ceptors, involved in processes such as vasodilation, pain
stimulation, and inflammation.8 RAMP1 has been studied ex-
tensively due to its ability to reduce inflammation,%10 and
promote injury repair.1112 As the alteration of its expression
can modulate the sensitivity of CGRP, and as it binds to and
regulates CLR expression, the targeting of RAMP1 may be
a promising approach to the alteration of CGRP activity.13
RAMP1-deficient mice exhibit impaired organ mass recovery
and hepatocyte proliferation, which stimulates the expres-
sion and activity of yes-associated protein (YAP)/TAZ after
70% hepatectomy or repeated intraperitoneal injection of
carbon tetrachloride.* Additionally, RAMP1 is involved in the
regulation of apoptosis, and the in-vitro and in-vivo inhibition
of the CGRP/CRLR + RAMP1 signaling pathway can induce
apoptosis in EVI1-high AML cells by disrupting extracellular
signal-regulated kinase (ERK)/mitogen-activated protein ki-
nase (MAPK) signaling.’> The ERK/MAPK pathway is known
to be involved in the regulation of various cellular processes,
including cell proliferation, differentiation, and apoptosis.1®
The excessive activation and increased expression of ERK1/2
may promote apoptosis and worsen IRI.17-19 The investiga-
tion of whether the expression of RAMP1 is altered during
HIRI and whether RAMP1 affects apoptosis through the ERK/
MAPK pathway is crucial. Whether RAMP1 deficiency affects
YAP phosphorylation in this context is also worth exploring.
Thus, we investigated the role of ERK1/2 in HIRI.

This study revealed that RAMP1 expression is significantly
increased in the livers of mice treated with liver I/R, suggest-
ing that RAMP1 plays a role in this process. Our in-vivo and
in-vitro experiments showed that RAMP1 alleviates liver in-
jury by reducing hepatocyte apoptosis and the inflammatory
response via the ERK/MAPK pathway. Moreover, we found
that RAMP1 decreases YAP phosphorylation, thereby pro-
moting hepatocyte activity. Our findings suggest that RAMP1
serves as a pivotal regulator in HIRI and is a promising target
for clinical intervention.

Methods

Animals

Male RAMP1 knockout (RAMP1-KO) mice aged 6-8 weeks
were obtained from Jiangsu Gempharmatech Biological Sci-
ence and Technology Ltd (Nanjing, Jiangsu, China) and bred
at the Guangzhou Ruiye Animal Model Center. CRISPR-Cas9
technology was used to edit RAMP1 in the KO mice. All mice
were maintained on a 12/12-hour light/dark cycle and pro-
vided with food and water.

Hepatic ischemia-reperfusion injury mouse models

A non-lethal segmental (70%) hepatic warm ischemia-rep-
erfusion model was established in both WT and RAMP1-KO
mice.2% Microvascular clamps were used to block the first por-
ta hepatis for 90 min, followed by reperfusion. Mice were sac-
rificed at 0, 6, and 24 h after reperfusion, and liver and blood
samples were collected. The sham group underwent identical
procedures but without the hepatic portal vein being blocked.

Immunohistological and the terminal deoxynucleoti-
dyl transferase-mediated dUTP-digoxigenin nick end
labeling (TUNEL) staining

Immunohistological staining of liver samples was performed
according to the manufacturer’s protocol. Briefly, following
a sequence of fresh xylene, 100 % ethanol, 100 % ethanol,
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95 % ethanol, and 75 % ethanol passing through the cyl-
inder, along with EDTA antigen repair, the slides were then
incubated with RAMP1 antigen antibodies (ab203282, ab-
cam) and Ki67 antibodies (ab15580, abcam). Subsequently,
the sections were stained with Dako secondary antibody
(DAKO immunohistochemical kit REAL EnVision) and coun-
terstained with hematoxylin. Hematoxylin and eosin (H&E)
staining were used to observe pathological changes in the
liver ischemia-reperfusion area of the mice. The TUNEL as-
say was performed using an in situ cell death detection kit
(11684817910, Roche).2! Nuclei were stained with DAPI
(62248, ThermoFisher Scientific). Nuclei with clear red stain-
ing indicated TUNEL-positive apoptotic cells. The mean +
standard deviation (SD) of positive cells per 1,000 samples
was calculated, followed by counting the labeled cells in 10
fields of view at 200x magnification.

Liver function assay and histologic examination

Serum alanine aminotransferase (ALT) and aspartate ami-
notransferase (AST) levels were measured as indicators of
liver injury using an automatic analyzer (Antech Diagnostics,
Los Angeles, California, USA). Paraffin-embedded formalin-
fixed liver tissue was cut into 4-um thick sections. The sec-
tions were stained with (H&E),22 and inflammation and tissue
damage were blindly analyzed using Suzuki’s standard.?3

Primary hepatocyte isolation

As described previously,212224 primary hepatocytes were
isolated from mice aged 6-8 weeks. Briefly, after anaes-
thesia, the mice were infused with a buffer solution (lacking
Ca2* and Mg?2+) through the portal vein. Liver perfusion was
performed using 0.05% type IV collagenase (C5138, Sigma),
followed by resection and filtration through a 0.22-pm cell
filter (SLGPO33RB, Millipore). Hepatocytes were isolated and
collected in DMEM (C11995, GIBCO).

Cell culture and hepatocyte hypoxia/reoxygenation
(H/R) model

Primary hepatocytes or L0O2 cells were cultured in DMEM/F12
containing 10% fetal bovine serum (FBS) in a humidified at-
mosphere of 5% CO, at 37°C. The I/R model was simulated
in vitro and the cells were treated with H/R. Primary hepato-
cytes initially placed in glucose-free DMEM (C11995, GIBCO)
were cultured under hypoxic conditions (1% oxygen) for 4 h,
followed by exposure to normoxic conditions.?!

Western blot analysis

Total protein was extracted from the liver tissue and primary
hepatocytes following the manufacturer’s protocol. The sam-
ples were then separated on 12% sodium dodecyl sulfate-
polyacrylamide gels (Bio-Rad, Hercules, CA, USA) and trans-
ferred onto polyvinylidene fluoride membranes (Millipore,
Bedford, MA, USA). The membranes were blocked with 5%
skim milk powder at 25°C for 1 h and incubated overnight at
4°C with the following primary antibodies targeting the follow-
ing proteins: RAMP1(ab156575, abcam), Bcl-2 (Cat. #3498S,
Cell Signaling Technology [CST]), Bax (Cat. #2772S, CST),
Caspase-3 (Cat. #9662S, CST), ERK1/2 (Cat. #9102S, CST),
p-ERK1/2 (Cat. #9101S, CST), JNK (Cat. #9252S, CST), p-
IJNK (Cat. #4668S, CST), P38 (Cat. #8690S, CST), p-P38
(Cat. #4511S, CST), YAP (Cat. #14074S, CST), p-YAP (Cat.
#4911S, CST), B-actin (Cat. #4967S, CST).

Quantitative real-time polymerase chain reaction
(qRT-PCR)

Total RNA was isolated using TRIzol (15596026, ThermoFish-
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er), while cDNA synthesis was carried out using the Hiscript
III RT Supermix for QPCR (+gDNA Wiper) kit, following the
manufacturer’s instructions. Subsequently, the cDNA was
quantified using a LightCycler 480 high-throughput real-time
fluorescent quantitative PCR instrument. The mRNA expres-
sion level was normalized to 18s rRNA level. Primers for gRT-
PCR were synthesized by Tsingke Company in Wuhan.

Cell Counting Kit-8 assay (CCK-8)

Adherent primary hepatocytes were plated in 96-well plates,
and each group was spread with 3-5 holes. Each hole
was filled with 200 pL medium or configured drugs. Dur-
ing the detection, the culture medium was replaced, 10 pL
CCK-8 (KGA317-2, KeyGEN) and 100pL culture medium
(C11875500BT, GIBCO) were added to each well, and incu-
bated at 37°C for 2 h. Finally, the absorbance at 450 nm was
measured using a microplate reader.

Drug

YAP phosphorylation inhibitor: Truli2> (E1061, Selleck, 0.2
nm) and PY-6026 (HY-141644, MCE; 1.6 um; 10 mg/kg
for mice in vivo, i.p.); ERK phosphorylation inhibitor: Te-
muterkib2? (HY-101494, MCE; 5 nm) and SCH77298428 (HY-
50846, MCE; 300 nm, 5 mg/kg for mice in vivo, i.p.2°); ERK
agonist: C16-PAF(HY-108635, MCE, 1 ym?30.31); STAT3 inhibi-
tor : Sttatic32 (HY-13818, MCE; IC50:10 ym); p-AKT inhibi-
tor: MK220633 (HY-10358, MCE; 65 nm); Caspase-3 inhibi-
tor: Z-VAD (HY-16658B, MCE; 10 um34; 10 mg/kg for mice in
vivo, i.p.3%); CGRP agonist: Calcitonin Gene Related Peptide
(CGRP) II, rat TFA (HY-P1913A , MCE; 83 um3%); Verteporfin
(HY-B0146, MCE; 5 pm?37).

Caspase-3 activity assay

Caspase-3 activity assays were conducted using the Cas-
pase-3 Activity Assay Kit (C1115, Beyotime), following pre-
viously established protocols.3839 Briefly, liver tissue treated
with pyrrolidine lysate was lysed using lysis buffer. The su-
pernatants obtained from the homogenates were collected
by centrifugation at 16,000 g for 15 min, and the protein
concentration was quantified using the Bradford Protein As-
say kit (PO006, Beyotime). Subsequently, the lysates were
incubated with Ac-DEVD-pNA (2 mmol/L) at 37°C for 2 h.
After incubation, the absorbance was measured at 405 nm
using a microplate reader (BioTek).

Caspase-3 Activity and Apoptosis Detection Kit for
Live Cell (C1077M, Beyotime)

Following H/R, the cell culture medium was aspirated into
a suitable centrifuge tube and the cells were rinsed once
with PBS. An appropriate volume of trypsin cell digestion
solution was added for cell detachment. The cells were col-
lected, transferred to a centrifuge tube, and centrifuged at
2,000 rpm for 5 min, The supernatant was discarded, and
the cells were gently suspended in PBS. The resuspended
cells were centrifuged at 2,000 rpm for 5 min, and the su-
pernatant was discarded. In total, 194uL Annexin V-mCher-
ry Binding Buffer was added to gently resuspend the cells.
Furthermore, 5 pL Annexin V-mCherry and 1pL GreenNuc™
Caspase-3 Substrate (1 mM) were added and mixed gently.
The mixture was incubated at room temperature (20-25°C)
for 20-30 min in the dark. GreenNuc™-DNA exhibited green
fluorescence (excitation/emission=500/530 nm), whereas
Annexin V-mCherry displayed red fluorescence (excitation/
emission=587/610 nm). Cells were collected and gently sus-
pended in 100 pL Annexin V-mCherry Binding Buffer. After
smearing, the cells were observed using an Elyra 7 Lattice

SIM (Zeiss, Germany). We followed identical procedures for
flow cytometry experiments, employing Gallios (Beckman
Coulter) flow cytometers for the analyses, and the data were
analyzed using CytExpert software packages.

Flow cytometric analysis of apoptotic cell

Cells were collected as described previously. The superna-
tant was discarded and 2 pL Propidium iodide (PI) and 2 pL
Annexin V (KGA107, KeyGEN) were added and mixed gen-
tly. Cells were suspended with 250 pL Binding Buffer and
incubated at room temperature (20-25°C) for 20-30 min in
the dark. Flow cytometric analyses were performed using a
Gallios flow cytometer (Beckman Coulter), and the data were
analyzed using the CytExpert software package.

Immunofluorescence staining

To analyze immune cell accumulation in the liver, immuno-
fluorescence staining of monocytes was performed using pri-
mary antibodies against mouse CD68 (ab125212; abcam)
and RAMP1 (ab203282; abcam). Goat anti-rabbit and anti-
mouse IgG (Invitrogen) were used as the secondary antibod-
ies. A 488 nm wavelength laser was employed to excite the
fluorescein tag (green emission for imaging), and a 555 nm
wavelength laser was used for the fluorescein tag (red emis-
sion for imaging) (G1236-100T, Servicebio). DAPI was ex-
cited using UV light (blue emission for imaging). The images
were obtained using three emerging channels. GreenNuc™-
DNA and Annexin V-mCherry (C1077M, Beyotime) were used
to monitor Caspase-3 activity and apoptosis in living cells,
and images were generated from both channels. The co-lo-
calization of RAMP1 and macrophages was detected using
confocal microscopy (LSM980, Zeiss, Germany).

Transmission electron microscopy

The anaesthetized mice were perfused with 0.9% saline, and
1 mm3 liver tissue blocks were obtained. Next, the fresh tis-
sue blocks were immersed in fixative for transmission elec-
tron microscopy (Servicebio) at 4°C for 4 h. They were then
treated with 1% Os0O4 in 0.1 mol/L PBS for 2 h at room tem-
perature, followed by a dehydration process with gradient
alcohol. Subsequently, the sections were embedded and un-
derwent baking in an oven at 60°C for 48 h and were cut into
ultrathin sections (60 nm) using an ultramicrotome. Finally,
the ultrastructure of the tight junctions of the liver was ob-
served using a transmission electron microscope (HITACHI,
HT7700) as described previously.40

Statistical analyses

Data were expressed as the means % SDs, including IHC stain-
ing and western blot results. Statistical differences between
the two groups were analyzed using a two-tailed unpaired
Student’s t-test. p<0.05 was considered statistically signifi-
cant by GraphPad Prism 8.0.1 (GraphPad Software, USA).

Results

RAMP1 upregulation is related closely to HIRI

To examine the changes in RAMP1 in HIRI, we created an in-
vivo model of HIRI in mice and an in-vitro model of hypoxia/
reoxygenation (H/R) treatment of primary hepatocytes iso-
lated from mice. RAMP1 expression was upregulated at the
protein and mRNA levels in the HIRI model and peaked at 6
h after I/R treatment (Fig. 1A-C). Primary hepatocytes from
wild-type (WT) mice treated with H/R also showed increases
in RAMP1 protein levels compared with control hepatocytes
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(Fig. 1D, E). Immunohistochemical analysis confirmed that
RAMP1 expression peaked at 6 h after I/R treatment (Fig.
1F, G).

RAMP1 ameliorates liver damage induced by HIRI

To investigate the role of RAMP1 in HIRI in vivo, we gener-
ated RAMP1- knockout (KO) mice. The mice exhibited RAMP1
deficiency in the liver (Fig. 2A) and hepatocytes (Fig. 2B),
and showed no signs of liver damage under sham condi-
tions (Fig. 2C). Following the HIR operation, RAMP1-KO and
WT mice had increased serum ALT and AST levels reflecting
liver damage, which were higher in the former group (Fig.
2C, D). Histological analysis of liver tissue obtained immedi-
ately after reperfusion showed normal hepatocyte morphol-
ogy and lobular structure in the sham group, and mild to
moderate hepatocyte swelling and mild hepatic sinus dilation
in the WT and RAMP1-KO groups. At 6 h after reperfusion,
severe hepatocyte swelling, inflammatory cell infiltration,
and patchy necrosis were observed in the RAMP1-KO and
WT groups, and were more serious and extensive in the for-
mer (Fig. 2E, F). Consistent with these histological assess-
ments, the necrotic area and Suzuki score were significantly
elevated in the RAMP1-KO group compared with those in the
WT group (Fig. 2G). Levels of the inflammatory factors IL-6,
IL-1B, and TNF-q, detected by quantitative RT-PCR (Supple-
mentary Table 1), showed similar changes over time in both
groups (Supplementary Fig. 1A, C, D). However, the level
of the protective inflammatory factor IL-10 was significantly
decreased in the RAMP1-KO group at 6 h after reperfusion
(Supplementary Fig. 1B). These findings suggest that RAMP1
plays a protective role against HIRI in mice.

RAMP1 inhibits hepatocyte apoptosis and promotes
liver proliferation in HIRI

As apoptosis is the primary manifestation of HIRI, we deter-
mined the apoptotic rate in liver tissues using TUNEL stain-
ing. We found that RAMP1 deficiency worsened apoptosis,
especially at 6 h after I/R (Fig. 3A, B). Under sham condi-
tions, TUNEL signals were undetectable in WT and RAMP1-
KO mouse livers. Relative to those of WT mice, the livers
of RAMP1-KO mice showed reduced expression of Bcl-2 (a
pro-survival gene) and increased expression of Bax (a pro-
apoptotic gene) (Fig. 3C, Supplementary Fig. 2A). Western
blot analysis revealed that HIRI induced greater expression
of cleaved Caspase-3 in the RAMP1-KO group than in the WT
group (Fig. 3C, Supplementary Fig. 2B). The same phenom-
enon was observed in primary hepatocytes (Fig. 3D, Supple-
mentary Fig. 2C, D). Transmission electron microscopy also
showed distinct indications of apoptosis (Supplementary Fig.
3A, B).

Conversely, significantly fewer Ki67-positive cells were ob-
served in the RAMP1-KO group than in the WT group (Fig.
3E, F). We examined alterations in Caspase-3 activity dur-
ing HIRI and used Annexin V staining to detect apoptosis
(Fig. 4A, B). The red and green fluorescence of hepatocytes
increased notably during hepatic I/R and weakened upon
treatment with Z-VAD (a Caspase-3 inhibitor). Flow cytome-
try demonstrated significant increases in apoptosis and Cas-
pase-3 activity during H/R and a decrease in the proportion
of apoptotic cells upon Caspase-3 activity inhibition (Fig. 4C-
F). Similarly, Z-VAD tended to reduce liver cell injury in the
I/R animal model (Fig. 4G-J], Supplementary Fig. 3C). The
cell and animal experiments consistently showed increases
in hepatocyte apoptosis and Caspase-3 activity during HIRI.
The results suggest that RAMP1 inhibits hepatocyte apopto-
sis and promotes liver proliferation during HIRI.

RAMP1 protects hepatocytes against IRI by inhibit-
ing the ERK/MAPK pathway and YAP phosphoryla-
tion

At 6 h after HIR, the number of cleaved Caspase-3-positive
cells peaked and the phosphorylation of YAP was significantly
enhanced, suggesting that apoptosis was the most severe.
To identify the pathway that was significantly activated to
cause increased apoptosis after RAMP1-KO, we used YAP
and ERK phosphorylation inhibitors. CCK-8 revealed no sig-
nificant effect on the activity of WT or RAMP1-KO primary
hepatocytes under normoxic conditions (Fig. 5A). Under H/R,
the YAP phosphorylation inhibitor PY-60 and ERK phospho-
rylation inhibitor SCH772984 significantly inhibited the H/R-
induced apoptosis of RAMP1-KO primary hepatocytes (Fig.
5B). Other pathways, such as those of p-AKT and STAT3,
did not significantly alter cell activity after inhibitor use un-
der H/R. We detected changes in the MAPK pathway in WT
and RAMP1-KO primary hepatocytes after H/R treatment.
RAMP1-KO primary hepatocytes did not affect basic INK,
ERK1/2, or p38 signal transduction under control conditions
(Fig. 5C-F). After 6 h of H/R treatment, the phosphoryla-
tion of JNK showed no significant change, that of p38 was
significantly decreased, and that of ERK1/2 was significantly
increased compared with those in the WT group. The phos-
phorylation of YAP is also shown in Figure 5C and G. Similar
results were observed in WT and RAMP1-KO mice after HIRI,
suggesting that RAMP1 affects apoptosis through ERK/MAPK
and YAP (Fig. 5H-L).

RAMP1 protects hepatocytes against IRI by inhibit-
ing the ERK/YAP pathway

The detection of apoptosis-related protein levels in primary
hepatocytes after 6 h of H/R using the YAP phosphorylation
inhibitor PY-60 and the ERK1/2 phosphorylation inhibitor
SCH772984 showed different degrees of increased Bcl-2 ex-
pression and reduced Bax and cleaved Caspase-3 expression
(Fig. 6A-C). These effects were also observed in the livers of
RAMP1-KO mice (Fig. 6D-F). In the animal model, PY-60 and
SCH772984 significantly reduced HIRI, protecting hepato-
cytes (Supplementary Fig. 4A-E). These results indicate that
RAMP1 regulates HIRI-related apoptosis through ERK/MAPK
and YAP.

Primary hepatocytes subjected to hypoxia and treated
with PY-60 for 6 h showed reduced YAP phosphorylation,
suggesting YAP pathway inhibition. However, the phospho-
rylation of ERK1/2 did not change; with SCH772984 admin-
istration during the sixth hour of H/R, the p-ERK1/2 level
decreased as expected and YAP phosphorylation decreased
significantly relative to the control (Fig. 6G). To elucidate the
regulatory interplay among RAMP1, ERK1/2, and YAP, we
employed the CGRP agonist CGRP II, rat TFA, known to ef-
ficaciously activate RAMP1 (Fig. 7A, B). Subsequently, CGRP
agonists, an ERK inhibitor and agonist, and a YAP inhibi-
tor and agonist were employed in the H/R model for CCK-8
analysis. CGRP agonist treatment substantially reduced H/R
damage and increased cell activity, whereas the co-adminis-
tration of a CGRP agonist with an ERK agonist (C16-PAF) or
YAP inhibitor (verteporfin) significantly reduced cell activity.
The co-administration of the CGRP agonist with SCH772984
or PY-60 increased cell activity (Fig. 7C, D), implying that
RAMP1 acts upstream of YAP and ERK1/2. We administered
SCH772984 with Verteporfin or PY-60 to scrutinize the regu-
latory relationship between ERK1/2 and YAP. SCH772984 and
SCH772984 + PY-60 significantly boosted cell activity during
H/R, whereas SCH772984 + Verteporfin notably reduced this
activity. Conversely, C16-PAF + Verteporfin markedly reduced
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A

Fig. 7. Regulatory interplay among RAMP1, ERK, and YAP during HIRI. (A) Protein levels of RAMP1 in Control and H/R groups with and without CGRP agonist.
(B) Relative cell activity was determined by CCK-8 assay of RAMP1 in the control and H/R groups using a CGRP agonist. (C) CCK-8 assay was performed using CGRP
agonists, YAP inhibitors, and agonists in H/R. (D) CCK-8 assay was performed using a CGRP agonist combined with an ERK inhibitor or agonist in H/R. (E) CCK-8 experi-
ments were performed using ERK inhibitors in combination with YAP inhibitors or agonists in H/R. (F) CCK-8 assays were performed using ERK agonists combined with
a YAP inhibitor or agonist in H/R. (G) Statistical analysis of flow cytometry to detect the proportion of apoptosis in H/R with a CGRP agonist, YAP inhibitor and agonist,
and ERK inhibitor and agonist. (H) Statistical data in H/R, ERK inhibitor combined with YAP inhibitor or agonist were used to detect the proportion of apoptosis by flow
cytometry. (I) Statistical data in H/R using ERK agonists combined with YAP inhibitors or agonists to detect the proportion of apoptosis. CGRP agonist: Caltonin gene-
related peptide (CGRP) II, rat TFA, ERK agonist (C16-PAF); ERK inhibitor (SCH772984); YAP agonist (PY-60); and YAP inhibitor (Verteporfin). The cells were treated
with apoptosis pathway inhibitors and subjected to 6 h of reperfusion after hypoxia. All data are presented as the mean + SD. *p<0.05, **p<0.01, ***p<0.001 using
Student’s two-tailed t-test. CCK-8, cell counting Kit-8; CGRP agonist, caltonin gene-related peptide agonist; HIRI, hepatic ischemia-reperfusion injury.
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cell activity during H/R and C16-PAF + PY-60 increased this
activity (Fig. 7E, F). These findings were corroborated by flow
cytometry; the co-administration of the CGRP agonist with
SCH772984 or PY-60 significantly reduced the proportion of
apoptotic cells during H/R, whereas the co-administration of
the CGRP agonist with C16-PAF or Verteporfin significantly
increased this proportion (Fig. 7G, Supplementary Fig. 5A).
Under H/R, SCH772984 + verteporfin and C16-PAF + Verte-
porfin substantially increased the proportion of apoptotic
cells, whereas co-administration with PY-60 and C16-PAF +
PY-60 significantly reduced this proportion (Fig. 7H, I, Sup-
plementary Fig. 5B, C). These results strongly indicate that
RAMP1 plays a role in the mitigation of hepatocyte injury
by decreasing the phosphorylation of ERK1/2, which in turn
leads to the reduction of YAP phosphorylation, during HIR.

Discussion

HIRI is a significant risk factor affecting survival after liver
transplantation and contributing to donor shortages, and ef-
fective treatment strategies are urgently needed.*142 This
study was the first in which the role of the RAMP1 gene in
mice subjected to HIR was investigated, and its results pro-
vide insight contributing to the identification of a novel thera-
peutic target for HIRI. It revealed that RAMP1 expression is
upregulated significantly during HIRI, that the RAMP1 gene
protects against HIRI by reducing hepatocyte apoptosis, and
that the mechanism potentially underlying this hepatopro-
tective effect is related to the phosphorylation of YAP and the
ERK/MAPK pathway.

In mice, RAMP1 deficiency leads to increased macrophage
and mast cell infiltration of colon tissue and the elevation of
TNF-a and IL-1B levels, and RAMP1-KO exacerbates dextran
sulfate sodium-induced colitis.® and increases inflammation,
tissue edema, and pancreatic injury in the early stages of
acute pancreatitis.1® RAMP1 has also been found to regulate
the Hippo/Yap pathway and to promote CGRP-induced osteo-
genic differentiation of BMSCs.43 Its overexpression stimu-
lates the proliferation of MSF through the Gai3-PKA-CREB-
YAP axis.!! Furthermore, RAMP1 deficiency severely impairs
organ mass recovery and hepatocyte proliferation after acute
and chronic liver injury.14 The protective effect of RAMP1 in
different organs is supported by abundant evidence. Simi-
larly, our recent studies have shown that RAMP1 plays a
beneficial role under pathological conditions. H&E and TUNEL
staining and liver function testing revealed aggravated liver
tissue damage in RAMP1-KO mice relative to that in WT mice
during IRI, but a minimal effect on RAMP1-KO liver tissue un-
der physiological conditions, suggesting that RAMP1 helps to
reduce the damage to liver structure and function during IRI.
Given the critical role of RAMP1 in HIRI and its classification
as a GPCR,8 these findings suggest that RAMP1 could serve
as a therapeutic target for future drug development, paving
the way for further clinical applications.

HIRI is characterized by apoptosis, but the underlying
mechanism remains unclear.44 Several signal transduction
pathways, including ERK/MAPK, have been found to play cru-
cial roles in HIRIL.'® The inhibition of the ERK/MAPK pathway
has a protective effect during HIRI. Carbon monoxide (CO),
for instance, inhibits the expression of early pro-inflamma-
tory and stress response genes and effectively improves
HIRI by activating the CO-MEK/ERK1/2 signaling pathway.*>
Pretreatment with cafestol, a natural diterpene extract from
coffee beans found mainly in unfiltered coffee, reduces ALT
and AST levels, inhibits apoptosis, reduces the release of
inflammatory mediators, and alleviates pathological liver
damage, mainly by inhibiting ERK- and PPARy-related path-
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ways.*6 Melatonin regulates the TLR-mediated inflammatory
response and improves I/R-induced liver damage by blunting
INK and ERK phosphorylation.4” Cyclopamine pretreatment
significantly reduces ERK phosphorylation and protects liver
function after IRI.#8 ERK1/2 plays a crucial role in the regula-
tion of upstream factors contributing to apoptotic events by
activating downstream transcription factors, inducing the re-
lease of cytochrome C, down-regulation of Bcl-2, and up-reg-
ulation of Bax. It also promotes apoptosis by activating and
upregulating the expression of Caspases 3, 8, and 9.49°0 In
this study, the subjection of RAMP1-deficient mice and cells
to HIR significantly increased ERK activation and phospho-
rylation; treatment with SCH772984 inhibited ERK signaling,
partially reversed the elevation of ERK phosphorylation, and
reduced the rate of apoptosis. In addition, RAMP1-deficient
mice exhibited significantly increased expression of pro-ap-
optotic proteins and decreased expression of anti-apoptotic
genes compared with WT mice. These findings strongly sug-
gest that RAMP1 plays a key role in the regulation of apopto-
sis in hepatocytes through the ERK/MAPK pathway.

YAP has been identified as a crucial component of the
mammalian Hippo signaling pathway,5%52 and recent re-
search has indicated it's involvement in the regulation of
apoptosis.>3-6 For instance, YAP has been shown to play a
role in glucose metabolism by promoting the expression of
GLUT3, researchers have suggested that glucose starvation
activates the Hippo-YAP signaling pathway, and YAP regu-
lates apoptosis by controlling glucose uptake.>’ Additionally,
when normal blood cells experience DNA damage-related
stress, the tyrosine kinase C-ABL translocates to the nucleus
and phosphorylates YAP at Y357 on tyrosine residues.>8 This
phosphorylated YAP binds to p73 and promotes the tran-
scription of pro-apoptotic genes such as p53AIPI,>> Bax,>3
and PUMA.>* YAP interacts with TEAD transcription factors
in the nucleus, leading to the upregulation of anti-apoptotic
genes.>9-61 Qur findings suggest that the anti-apoptotic ef-
fect of RAMP1 in hepatocytes is related to the regulation of
the ERK/MAPK pathway and the function and phosphoryla-
tion of YAP. RAMP1 contributes to the reduction of hepatocyte
injury by diminishing the phosphorylation of ERK, leading to
a decrease in YAP phosphorylation.

RAMP1 is a critical protein in CGRP receptor signaling, and
RAMP1-KO has been demonstrated to impede CGRP func-
tion.1314 Thus, we think that the mechanism underlying
RAMP1’s regulation of HIRI involves the activation of CGRP,
which, in turn, directly stimulates an increase in cAMP sign-
aling. During I/R, the phosphorylation of ERK and YAP in-
creases, leading to liver cell apoptosis and damage. CGRP-
induced cAMP signaling may directly mitigate cell damage by
inhibiting the phosphorylation of ERK and YAP. The findings
of this study provide valuable insight into the biological role
of RAMP1 and the mechanisms underlying RAMP1 damage in
HIRI. RAMP1-targeted interventions may provide strategies
for reducing IRI in various settings, including partial hepatec-
tomy and liver transplantation.
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